

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

Facultad de Ciencias Posgrado en Ciencias de la Vida

"BIOINSTRUMENTACIÓN"

DATOS GENERALES				
Tipo de crédito	Tipo de asignatura	Idioma de impartición	Modalidad de impartición	
Optativa	Curso	Español	Presencial y/o Mixta	

CRÉDITOS

De acuerdo con la propuesta curricular, los datos escolares de la asignatura son:

Semestre	Número de semanas	Horas presenciales de teoría por semana	Horas presenciales de práctica por semana	Horas de trabajo autónomo del estudiante por semana	Total de créditos (RGEP)
Optativa	16	2	1	5	8

OBJETIVO GENERAL DE APRENDIZAJE

Este curso busca que el estudiante logre instrumentar un sistema de adquisición y procesamiento de datos por medio de las tarjetas digitalizadoras NI USB 6009, diferentes tipos de sensores, una computadora y el software de programación gráfica LabView, que permite la generación de instrumentos virtuales.

COMPETENCIAS PROFESIONALES A LAS QUE CONTRIBUYE LA ASIGNATURA

Esta asignatura contribuye de manera directa al logro de las siguientes competencias profesionales del perfil de egreso del programa:

Competencia	Descripción de la competencia
Transversal	 Resolver problemas en alguna de las diferentes LGAC's del programa (Neurociencias, Biología Funcional, Ecología Integrativa y Conservación, y Bioingeniería) mediante el uso de metodologías y herramientas biológicas, analíticas y de ingeniería con énfasis en salud, conservación y medio ambiente, buscando contribuir al desarrollo de biotecnologías.
	 Realizar actividades de investigación y/o desarrollo tecnológico, solucionar problemas de amplio impacto social, con una perspectiva multidisciplinar, en áreas y disciplinas asociadas a la Fisiología, Biología Molecular, Genética, Biología Celular, Microbiología, Ecología y Conservación del Ambiente, Conservación, Neurociencias, y Bioingeniería, o en cualquiera de las áreas de especialización del posgrado
Profesional de Énfasis	 Diseñar y desarrollar dispositivos mecánicos, eléctricos, electrónicos y electromecánicos para atender las necesidades del personal de las ciencias biológicas y de la salud. Además, será capaz de realizar análisis y modelado de información aplicados a sistemas biológicos y médicos, con base a herramientas de ciencia de datos.
Profesional Específica	Diseñar y desarrollar prototipos de instrumentación virtual haciendo uso de las herramientas tecnológicas más recientes en el área de Bioingeniería.

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

Facultad de Ciencias Posgrado en Ciencias de la Vida

PLANEACIÓN DIDÁCTICA GENERAL

A continuación, se describe la planeación general del proceso de aprendizaje:

AU	continuación, se describe la planeación general del proceso de aprendizaje:			
#	Nombre de la	Resultados de	Metodologías y actividades de enseñanza-	
1	Unidad o Fase Principios Básicos de Señales Eléctricas 1.1 Concepto de voltaje o diferencia de potencial, y de corriente eléctrica 1.2 Propiedades eléctricas de resistencias y capacitores 1.3 Interconexión en serie y paralelo de resistencias y capacitores. 1.4 Leyes de Kirchhoff 1.5 Divisor de tensión y de corriente 1.6 Filtros pasa- bajos/pasa-altos de ler y 2do orden 1.8 Amplificación de una señal eléctrica	Revisar los conceptos elementales de las señales eléctricas de voltaje y corriente, y como se pueden ajustar estas variables por medio de elementos resistivos y capacitivos.	 aprendizaje Clases mediante exposición del profesor de algunos de los temas planteados por medio de cañón y/o pizarrón. Aprendizaje basado en el pensamiento, para fomentar que los estudiantes logren contextualizar, relacionar, entender, argumentar, analizar y convertir la información en conocimiento. Aprendizaje cooperativo, para fomentar el trabajo en equipo durante la realización de prácticas de laboratorio. Aprendizaje basado en proyecto, fomentando el desarrollo de competencias de resolución de problemas, diseño, comunicación y colaboración. 	
2	Tarjeta de Adquisición de Datos NI USB 6009 2.1 Entradas y salidas analógicas / digitales 2.2 Principio de la conversión analógica a digital 2.3 Teorema de Muestreo	Estudiar las características básicas de la tarjeta NI USB 6009, así como revisar el concepto de conversión analógica a digital.	 Clases mediante exposición del profesor de algunos de los temas planteados por medio de cañón y/o pizarrón. Aula invertida para temas específicos de la tarjeta de adquisición de datos NI USB 6009, organizando mesas redondas para afianzar los conceptos abordados. Aprendizaje basado en el pensamiento, para fomentar que los estudiantes logren contextualizar, relacionar, entender, argumentar, analizar y convertir la información en conocimiento. Aprendizaje cooperativo, para fomentar el trabajo en equipo durante la realización de prácticas de laboratorio. 	
3	Programación en LabView 3.1 Panel frontal y diagrama de bloques 3.2 Elementos de control, despliegue de	Conocer algunos de los dispositivos que son utilizados para hacer las mediciones en forma digital y como afecta en este tipo de mediciones	 Clases mediante exposición del profesor de algunos de los temas planteados por medio de cañón y/o pizarrón. Aprendizaje basado en el pensamiento, para fomentar que los estudiantes logren contextualizar, relacionar, entender, 	

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

Facultad de Ciencias Posgrado en Ciencias de la Vida

	información, y constantes 3.3 Bloques de procesamiento matemático 3.4 Creación y manejo de arreglos 3.5 Tipos de variables 3.6 Estructuras 3.7 Despliegue de gráficas 3.8 Bloques condicionales 3.9 Ciclos 3.10 Adquisición y generación de señales analógicas/digitales 3.11 Creación de archivos de registro	el teorema del muestreo para poder reconstruir la señal que se mide a partir de un número determinado de muestras.	 argumentar, analizar y convertir la información en conocimiento. Aprendizaje cooperativo, para fomentar el trabajo en equipo durante la realización de prácticas de laboratorio. Aprendizaje basado en el desarrollo de aplicaciones de programación orientada a objetos, fomentando el desarrollo de competencias de resolución de problemas y diseño.
4	Casos de Estudio 4.1 Implementar un circuito que lea un voltaje analógico y genere una salida digital 4.2 Implementar un circuito que utilice la entrada de un sensor analógico y genere un archivo de registro digital. 4.3 Implementar un circuito que mida una variable analógica y active una salida digital utilizando un parámetro de control. 4.4 Implementar la adquisición de una señal bioeléctrica y analizarla a través de los bloques de procesamiento de LabView. 4.4 Implementar la adquisición de dos o más señales simultáneamente y analizarlas a través de los bloques de procesamiento de LabView.	Aplicar los conceptos de señales eléctricas y las características de la tarjeta NI USB 6009, para implementar diversos casos de estudio.	 Clases mediante exposición del profesor de algunos de los temas planteados por medio de cañón y/o pizarrón. Aprendizaje basado en el pensamiento, para fomentar que los estudiantes logren contextualizar, relacionar, entender, argumentar, analizar y convertir la información en conocimiento. Aprendizaje cooperativo, para fomentar el trabajo en equipo durante la realización de prácticas de laboratorio. Aprendizaje basado en proyecto, fomentando el desarrollo de competencias de resolución de problemas, diseño, comunicación y colaboración.

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

Facultad de Ciencias Posgrado en Ciencias de la Vida

procesamiento de LabView.	

EVALUACIÓN

A continuación, se muestra las condiciones de las evaluaciones parciales.

# Parcial	Momento de evaluación	Método de evaluación y valor para la evaluación parcial	Ponderación para evaluación final	
1	Al final de la unidad 1	Asignación de un proyecto práctico basado en el uso de filtros y amplificadores operacionales	20%	
2	Al final de la unidad 2	Investigación y presentación oral de una aplicación de la adquisición de señales eléctricas utilizando una tarjeta NI USB.	10%	
3	Al final de la unidad 3	Asignación de un proyecto práctico utilizando programación orientada a objetos en LabView.	20%	
4	Al final de la unidad 4	Desarrollo de prácticas de laboratorio para la implementación de los diferentes casos de estudios.	20%	
5	Al concluir todas las unidades del curso	Asignación de un proyecto final asociado a la adquisición y análisis de para una aplicación específica utilizando los conceptos vistos a lo largo del curso.	30%	

RECURSOS BIBLIOGRÁFICOS Y DIGITALES

TEXTOS BÁSICOS

- "Medical Instrumentation", Webster J G, Houghton Mifflin Co, Boston, 1992.
- "Instrumentación electrónica moderna y técnicas de medición", Helfrick, Albert D., México, Prentice-Hall, 1991.
- "Process measurement and analysis", Lipták, Bela G., edit. Boca ratón, Fl. : CRC Press, 2003
- "Análisis de circuitos en ingeniería", W.H. Hyat, J.E. Kemmerly y S.M. Durbin, 8va Edición, Mc Graw Hill, 2012.
- "Labview programación para sistemas de instrumentación", J. Del Río, A.M. Lazaro, S. Shariat-Panahi y D. Sarriá, Ed. Alfaomega, 2013.

RECURSOS DIGITALES

- What is LabVIEW? https://www.ni.com
- Getting Started with LabVIEW https://learn.ni.com/learn/article/labview-tutorial
- Introduction to LabVIEWTM Six-Hour Course http://eceresearch.unm.edu/jimp/415/labview/LV_Intro_Six_Hours.pdf

REQUISITOS PARA CURSAR LA ASIGNATURA

Para poder cursar esta asignatura, es necesario:

Conocimientos básicos de física y matemáticas.

INTEROPERABILIDAD

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

Facultad de Ciencias Posgrado en Ciencias de la Vida

Esta asignatura es compartida con los siguientes programas de posgrado:

- Maestría en Ingeniería Electrónica
- Doctorado en Ciencias de la Ingeniería

OTRAS FORMAS DE ACREDITACIÓN

- Esta asignatura puede ser acreditada a través de la presentación de un documento probatorio que certifique que el estudiante ya cuenta con los aprendizajes necesarios: Sí
- Esta asignatura puede ser acreditada a través de un examen que certifique que el estudiante ya cuenta con los aprendizajes necesarios: Si.

MÁXIMO Y MÍNIMO DE ESTUDIANTES POR GRUPO

- Máximo de estudiantes por grupo para garantizar viabilidad académica, pedagógica y financiera: 20
- Mínimo de estudiantes por grupo para garantizar viabilidad académica, pedagógica y financiera: 2

ELABORADORES Y REVISORES

- Elaboró: Dra. Gudalupe Dorantes Méndez y Dr. Aldo Rodrigo Mejía Rodríguez
- Revisó: